Computational Intelligence Models for Insurance Fraud Detection: A Review of a Decade of Research
نویسندگان
چکیده
This paper presents a review of the literature on the application of data mining techniques for the detection of insurance fraud. Academic literature were analyzed and classified into three types of insurance fraud (automobile insurance, crop insurance and healthcare insurance) and six classes of data mining techniques (classification, regression, clustering, prediction, outlier detection, and visualization). The findings of this review clearly show that automobile insurance fraud detection have also attracted a great deal of attention in recent years. The main data mining techniques used for insurance fraud detection are logistic models, Decision tree, the Naïve Bayes, and support vector machine.
منابع مشابه
Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
متن کاملFinancial Reporting Fraud Detection: An Analysis of Data Mining Algorithms
In the last decade, high profile financial frauds committed by large companies in both developed and developing countries were discovered and reported. This study compares the performance of five popular statistical and machine learning models in detecting financial statement fraud. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements betw...
متن کاملPresenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm
both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...
متن کاملMEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کامل